Один из самых важных контролируемых показателей при производстве косметики и производстве БАД – плотность. В зависимости от производимого продукта специалисты компании «КоролёвФарм» используют несколько понятий и определений плотности.

Более чёткое определение понятия плотности требует уточнения формулировки этого термина:

  • Средняя плотность тела — отношение массы тела к его объёму. Для однородных тел она имеет называние просто плотности тела.
  • Плотность вещества — это плотность указанных тел, которые состоят из этого же вещества.
  • Плотность тела в точке — это предел отношения массы малой части тела (m), содержащей эту точку, к объёму этой малой части (V), когда этот объём стремится к нулю, или, записывая кратко .

При таком предельном переходе необходимо учитывать, что на атомарном уровне любое тело является неоднородным, в связи с чем необходимо остановиться на том объёме, который применяется для соответствующей используемой физической модели.

  • Насыпная плотность - под насыпной плотностью различных сыпучих материалов (сахар, лактоза, крахмал и т.д.) понимают количество этого порошка (сыпучего продукта), которое находится в свободно засыпанном состоянии в определённой единице объема.
  • Относительная плотность – является отношением двух понятий, т.е. терминов, и может рассматриваться как отношение объёмной, то есть насыпной плотности, к истинной плотности.

Плотность продукции является важным параметром при изготовлении косметической продукции, так как она влияет на внешний вид продукта, его органолептические свойства, вес и стоимость готовой продукции. Очень важно учитывать плотность продукта при фасовке изготовленной продукции во флаконы, тубы, банки и так далее.

Например, плотность кремов - меньше единицы. Как правило, плотность крема находиться в пределах 0,96 – 0,98 г/см3. В соответствии с проведёнными испытаниями при плотности 0,96 и объеме 50 мл масса крема составит 48 г, а при плотности 0,98 масса увеличивается уже до 49 г.

Плотность шампуней, наоборот, больше или равна единице, она находиться в пределах 1,0 - 1,04 г/см3. Исследования показывают, что при плотности 1,0 и объеме 100 мл масса шампуня в упаковке составит 100 г, а при плотности 1,04 уже 104 г.
Определение плотности

Как уже говорилось, плотность определяется как отношение массы тела к занимаемому объёму. Поэтому, числовые значения плотности вещества показывают массу принятой или указанной единицы объема этого вещества. Как видно из приведённого примера, плотность металла, в данном случае чугуна, 7 кг/дм3. Получается, что 1 дм3 чугуна имеет массу 7 кг. Сравниваем плотность водопроводной воды – 1 кг/л. Из этого примера следует, что масса 1 л водопроводной воды равна 1 кг. Один и тот же объём разной субстанции или вещества имеют различный вес.
Известно, что при снижении температуры плотность тел увеличивается.

Существует два основных метода определения плотности вещества: ареометрический и пикнометрический. Для измерения плотности различных жидкостей используется ареометр, а для измерения плотности кремов, бальзамов, гелей, зубных паст используется пикнометр.

На основании измеренной плотности косметической продукции по согласованным на предприятии таблицам «Пределы допускаемых отклонений содержимого нетто от номинального количества» в соответствии с ГОСТ 8.579-2002 «Требования к количеству фасованных товаров в упаковке любого вида при их производстве, расфасовке, продаже и импорте» определяются пределы допустимых отклонений содержимого нетто продукта от номинального значения.

Ареометр

Ареометр — прибор, которым пользуются для измерения плотности различных жидкостей и жидких субстанций. Как правило, он представляет собой стеклянную трубку, нижняя часть которой значительно расширена в диаметре. При калибровке расширенная часть заполняется дробью или ртутью, которые используются для достижения заданной массы. В верхней части ареометра находится проградуированная шкала в определенных соответствующих значениях плотности. Поскольку плотность жидкостей и жидких субстанций весьма значительно зависит от температуры, поэтому ареометр или снабжают термометром, или производят одновременное измерение температуры жидкости другим термометром.
Гипа́тия Александри́йская (370(?)-415)

Для проведения процедуры измерения плотности жидкой субстанции или жидкости чистый ареометр осторожно помещают в достаточного объема мерную мензурку с жидкостью, но таким образом, чтобы ареометр свободно плавал в ней. Значения плотности определяют по шкале ареометра находящейся на нижнем крае мениска жидкости.

В физике Ареометром называют прибор, служащий для определения значения плотности и, следовательно, определения удельного веса тел.

Историки науки считают, что ареометр как прибор для проведения измерений изобрела Гипатия – знаменитая женщина-ученый, астроном, математик и философ, глава Александрийской школы неоплатонизма. Благодаря её научной деятельности были изобретены или усовершенствованы и другие приборы: дистиллятор, астролябия и планисфера.

Устройство современных ареометров, как и ареометров, применяемых в древности, основано на известном гидростатическом законе - законе Архимеда, Как известно из школы младших классов, закон Архимеда гласит, что каждое тело плавает в жидкости и погружается настолько глубоко в нее, что вес вытесненной этим телом жидкости равен весу всего тела, плавающего в этой жидкости.
Архимед плотность

Интересные обстоятельства предшествовали открытию закона Архимеда, который прославил ученого на все времена. «Эврика!», – восклицает каждый, находя решение трудной задачи, а ведь этому предшествует целая история.

Архимед служил при дворе Гиерона II – тирана Сиракуз, который правил в 270-215 годах до нашей эры, а с 269 года до нашей эры носил титул царя. Гиерон слыл коварным, жадным и подозрительным правителем.

Он подозревал своих ювелиров в том, что при изготовлении золотых изделий они подмешивают в золото серебро или хуже того олово к благородному металлу, что и послужило причиной открытия одного из физических законов. Он поручил Архимеду изобличить мастеров-ювелиров, так как он был уверен, что при изготовлении для него короны ювелиры украли золото.

Для решения этой сложной задачи необходимо знать не только массу, но и определить объём изготовленной короны, а это было самым сложным, чтобы в дальнейшем вычислить плотность металла. Корона имеет сложную и неправильную геометрическую форму, определить её объём - очень не простая задача, над решением которой долгое время размышлял Архимед.
Решение плотность

Решение было найдено Архимедом оригинальным способом, когда он погружался в ванну – уровень воды резко поднялся, после того когда он погрузился в воду. Тело учёного вытеснило равный ему объём воды. «Эврика!» - воскликнул Архимед и побежал во дворец, как утверждает легенда, не одевшись. Дальше всё было просто. Он погрузил корону в воду, измерил объём вытесненной жидкости и таким образом определил объём короны.

Благодаря этому Архимедом и был открыт принцип или, как его ещё называют, закон плавучести. Твердое тело, погружённое в жидкость, вытеснит объем жидкости, равный объему погруженного в жидкость тела. В воде может плавать любое тело, если его средняя плотность меньше плотности той жидкости, в которую его поместили.

Закон Архимеда гласит: на всякое тело, которое погружено в жидкость или в газ, действуют выталкивающие силы, направленные вверх и равные весу вытесненной им жидкости или газа.
До настоящего времени человечество успешно применяет знания, полученные от далёких предков во многих областях своей деятельности, в том числе и при производстве косметики.

Как уже говорилось, для измерения плотности используется также пикнометр. Измерение плотности с помощью пикнометра проводят следующим образом.

Перед испытанием необходимо промыть пикнометр последовательно растворителем для удаления следов испытуемого вещества, затем хромовой смесью, водой, спиртом, эфиром, затем высушить до постоянной массы и взвесить (результат взвешивания записывают в граммах с точностью до четвертого десятичного знака).

Пикнометр заполняется с помощью воронки или пипетки дистиллированной водой немного выше метки, закрывается пробкой и помещается на 20 минут в термостат с температурой (20 ±0,1)°С.

При достижении температуры (20 ±0,1)°С, необходимо довести уровень воды в пикнометре до метки, быстро отбирая излишек воды при помощи пипетки или свернутой в трубку полоски фильтровальной бумаги или, добавляя водой до метки, закрыть пикнометр пробкой и поместить пикнометр в термостат с температурой (20 ±0,1) °С на 10 минут.

Вынуть пикнометр из термостата, взвесить, освободить от воды, высушить его и заполнить пикнометр испытуемой жидкостью и термостатировать.

Вычислите плотность ( ) в г/см3 по формуле:

где: m1 – масса пикнометра с испытуемой жидкостью, г;
m0 – масса пустого пикнометра, г;
m2 - масса пикнометра с водой, г;
А – поправка на аэростатические силы, вычисляется по формуле:


А= 0,0012 х V.

где: V – объем пикнометра, см3;
0,0012 – плотность воздуха при 200С, г/см3;
0,9982 – плотность воды при 200С, г/см3;
     

На фирме «КоролевФарм» для измерения плотности косметических изделий, имеющих густую консистенцию (эмульсии, крем-гели, гели, бальзамы и т.п.), используется экспресс-метод. Суть его заключается в том, что для проведения испытаний используется калиброванный шприц.

Для определения плотности взвесьте пустой шприц (результат взвешивания записывают в граммах с точностью до второго десятичного знака), наполните шприц дистиллированной водой до максимальной метки, затем тщательно вытрите поверхность шприца и произведите повторное взвешивание.

Объем (V) шприца определите по формуле:

где: m1 – масса шприца с водой (г), m0 - масса пустого шприца (г), 0,9982 - плотность воды при 200С, г/см3;

Снова взвесьте пустой шприц (результат взвешивания записывают в граммах с точностью до второго десятичного знака), заполните шприц косметической массой до максимальной метки, не допуская попадания пузырьков воздуха.

Тщательно вытрите поверхность шприца и произведите его повторное взвешивание.

Плотность ( ) в г/см3 вычислите по формуле:

Где, m1 – масса шприца с косметическим средством (г), m0 - масса пустого шприца (г), V – объем шприца (см3)

За результат испытания принимают среднеарифметическое результатов двух параллельных определений, расхождение между которыми не превышает 0,01 г/см3.
Этот метод позволяет быстро определить плотность изготовленного косметического продукта.

Измерение оптического вращения
Метод измерения массовой доли общего железа в воде
Метод определения массовой доли токсичных элементов 1 элемент (свинец, мышьяк, кадмий, ртуть)
Метод определения акролеина в пищевых продуктах
Метод определения вкуса
Метод определения внешнего вида
Метод определения водородного показателя
Метод определения запаха
Метод определения зараженности амбарными вредителями лекарственного растительного сырья
Метод определения истираемости таблеток
Метод определения кислотного числа
Метод определения кислотности и щелочности
Метод определения количественного содержания магния оксида
Метод определения количественного содержания дубильных веществ в пересчете на галловую кислоту
Метод определения количественного содержания антоцианов
Метод определения количественного содержания арбутина
Метод определения количественного содержания аскорбиновой кислоты
Метод определения количественного содержания глицирризиновой кислоты
Метод определения количественного содержания дубильных веществ в пересчете на танин
Метод определения коллоидной стабильности косметических средств
Метод определения крахмала в пищевой продукции
Метод определения массовой доли редуцирующих сахаров
Метод определения массовой доли этилового спирта
Метод определения массовой концентрации аммиака и ионов аммония в воде
Метод определения перекисного числа
Метод определения перманганатного индекса в воде
Метод определения потери в массе при высушивании
Метод определения примесей минеральных в раст. сырье
Метод определения распадаемости таблеток, капсул
Метод определения содержания агликонов антроценового ряда в пересчете на хризофановую кислоту
Метод определения содержания жира в масличных семенах, пищевых продуктах
Метод определения содержания инулина в БАД
Метод определения содержания йода в пищевых продуктах, БАД
Метод определения содержания нерастворимых в воде веществ
Метод определения содержания оксикоричных кислот в пересчете на цикоревую кислоту
Метод определения содержания органических кислот в лекарственном сырье,  БАД
Метод определения содержания полифенольных соединений в пересчете на галловую кислоту
Метод определения содержания радионуклидов в растительном сырье
Метод определения содержания флавоноидов в пересчете на кверцетин
Метод определения содержания флавоноидов в пересчете на рутин
Метод определения содержания цинка в воде
Метод определения содержания экстрактивных веществ, извлекаемых 70% спиртом
Метод определения содержания эфирного масла в растительном сырье
Метод определения устойчивости пены средств моющих синтетических
Метод определения цветности воды, цвета косметических средств, БАД
Методика определения воды и летучих веществ или сухого вещества
Методика определения герметичности блистеров
Методика определения жесткости воды
Методика определения хлоридов в воде. Методика определения остаточного активного хлора в воде
Методика определения эмульгирующей способности структурообразующих компонентов
Методика проведения органолептических испытаний
Методы  определения насыпной плотности
Методы количественного определения основного вещества
Методы определения массовой доли сахарозы
Методы определения массовой доли суммы тяжелых металлов
Методы определения мыла в растительных маслах и натуральных жирных кислотах
Методы определения плотности вещества
Методы определения подлинности
Методы определения прозрачности и цветности растворов
Методы определения содержания каратиноидов
Методы определения содержания сульфатов в воде
Методы определения содержания хлоридов в  средствах моющих синтетических
Методы определения сульфатной золы
Методы определения сухого остатка в воде
Методы определения термостабильности косметических средств
Определение массовой доли анионактивного поверхностно-активного вещества
Определение массы содержимого в капсуле
Определение оксиметилфурфурола в меде
Определение остаточного хлора в воде
Определение пенного числа в парфюмерно-косметической продукции
Определение показателя преломления
Определение размера частиц
Определение растворимости веществ, таблеток, капсул
Определение содержания примесей органических
Определение способности веществ к гелеобразованию

1. Определение содержания витамина С по ГФ XI п.9.«Государственная фармакопея СССР»

Метод основан на визуальном титровании с приготовлением контрольного раствора.

Точную навеску (драже, таблетки, сухие напитки и др.) количественно переносят в мерную колбу, доводят водой до метки, перемешивают и фильтруют. К отобранной пробе прибавляют раствор хлористоводородной кислоты, раствор калия йодида, раствор крахмала и титруют раствором калия йодата. В зависимости от количества израсходованного калия йодата рассчитывают содержание аскорбиновой кислоты.

2. Определение содержания витамина С по Р 4.1.1672-03 «Руководство по методам контроля качества и безопасности БАД к пище».

Для исследования объектов, дающих светлоокрашенные экстракты, применяют метод визуального титрования с использованием количественного окисления аскорбиновой кислоты раствором 2,6-дихлорфенолиндофенолята натрия. Для других объектов, дающих окрашенные экстракты, используется методы потенциометрического титрования, спектрофотометрические и флуорометрические методы.

Аппаратура:

  • спектрофотометр с диапазоном измерения от 220 до 1100 нм
  • фотоэлектроколориметр с диапазоном измерения от 364 до 2 980 нм с коэффициентом пропускания от 100 до 1%;
  • весы лабораторные 2 класса точности;
  • РН- метр;
  • термостат;
  • мешалка магнитная;
  • другая аппаратура.

Аскорбиновая кислота: история синтеза

Витамин С (антискорбутный витамин, аскорбиновая кислота) получил название антицинготного, антискорбутного фактора, который предохраняет от развития цинги – болезни, как многие говорили, мореходов, в средние века принимавшей характер эпидемий. Долго не удавалось установить причину болезни и распознать её, и только в начале ХХ века, в 1907 - 1912 годах были получены экспериментальные доказательства, которые показали прямую зависимость между развитием заболевания и недостаточностью или полным отсутствием в пище аскорбиновой кислоты. Опыты и эксперименты исследователи проводили на морских свинках. Эти животные были выбраны потому, что как оказалось, они так же как и люди подвержены заболеванию цингой.

В 1933 году из подвала лаборатории политехнического института в Цюрихе во всеуслышание заявили о сенсационном открытии в химии - синтезе витамина С (L-аскорбиновой кислоты).

Исследователь польского происхождения, Тадеуш Рейхштейн (1897-1996), сначала при помощи десятиступенчатого химического процесса получил из глюкозы Z-ксилозу, а последнюю с помощью синильной кислоты превратил в витамин С. Для крупного производства метод был слишком сложным, а выход продукции слишком мизерным. В то же время витамин С по сравнению с другими витаминами особенно необходим человеку, причем в гораздо большем количестве.

Рейхштейн и его молодой коллега Грюсснер решили попробовать другой метод. Они хотели использовать сорбозу в качестве промежуточного продукта, но это оказалось также сложно. Однако в ходе экспериментов они наткнулись на наблюдение, сделанное в 1896 году французским химиком Габриэлем Бертраном: бактерии уксусной кислоты Acetobactersuboxydans превращают в сорбозу легко получаемый сорбит.

Рейхштейн совершил тогда необычный для химика того времени поступок: он, рассуждая как биотехнолог, купил у микробиологов чистую культуру ацетобактера. Но эти бактерии не хотели служить Рейхштейну.

К счастью, Бертран описал одну методику «улавливания» диких сорбозопроизводящих бактерий. 50 лет спустя Рейхштейн вспомнил это описание: «Возьми вино, добавь немного сахара и уксуса и оставь его в бокале. Эта смесь привлечет рой маленьких мушек, называемых дрозофилами (Drosophila). В кишечнике дрозофилы живут некие бактерии, и, когда мухи начинают пить смесь, немного бактерий попадает в жидкость, что приводит к выработке сорбозы».

Когда Рейхштейн планировал свой эксперимент, стояла поздняя осень, плодовые мушки исчезли. Но было еще тепло, и он не хотел ждать до следующего лета и решил попробовать.

«Вместо сахара я добавил в вино сразу сорбит, немного уксуса, как было указано, и еще немного растворенных дрожжей. Я поставил пять стаканов этого раствора на подоконник в подвале моей лаборатории, там, где проглядывало солнце. Была суббота. И я подумал: хорошо, если мушки прилетят, а если нет — я ничего не теряю. В понедельник, когда я вернулся, все высохло. Но два стакана были полны кристаллов. Мы внимательно их рассмотрели – это была чистая сорбоза! В одном из стаканов лежала утонувшая дрозофила. И от нее во все стороны простирались кристаллические нити сорбозы. Природные бактерии произвели сорбозу за два дня, чего купленные не смогли сделать и за шесть недель!»

И далее: «Из сорбозы действительно очень легко сегодня произвести витамин С граммами, но можно заранее сказать, что есть возможность производить и тонны. Я думаю, мы получили 30—40 грамм витамина С из 100 грамм глюкозы. Невероятно!»

Безусловно, научные открытия всегда будут потрясать нас, но иногда не менее удивительно и то, каким образом они были сделаны!

Совсем маленькая тогда фирма Roche из Цюриха купила у Рейхштейна лицензию на производство. Он немного переживал из-за того, что его метод не совсем «химический».

Рейхштейн острил: «...нравится вам это или нет, но по-другому я не смог. Эта бактерия - единственный "лаборант", который может получить 90-% выход сорбозы из сорбита. Никакому человеку это не под силу! И это за два дня абсолютно без ничего, из воздуха. Нужно только немножко подкормить их дрожжами».

На протяжении многих лет фирма Hoffmann La Roche была крупнейшим в мире производителем витамина С. Сейчас же 65% мирового производства приходится на долю китайских биотехнолоческих фирм, цена продукции у которых значительно ниже рыночной.

Тадеуш Рейхштейн получил в 1950 году Нобелевскую премию в медицине - правда, за его работу над кортизоном, гормоном надпочечников.

Физические свойства витамина С: кристаллический порошок, белого цвета, имеет кислый вкус, растворим в спирте и легко растворим в воде.

Метод определения количественного содержания аскорбиновой кислоты (витамина С)Метод определения количественного содержания аскорбиновой кислоты (витамина С)

Аскорбиновая кислота (Acidum ascorbinicum) (С6Н8 О6): применение и свойства

Аскорбиновая кислота, витамин С или L-аскорбиновая кислота входит в состав многих БАД к пище выпускаемых на контрактном предприятии ООО «КоролёвФарм».

Аскорбиновая кислота — одно из основных веществ в рационе человека, необходимое для нормального функционирования всех систем организма в целом, и в том числе костной и соединительной ткани. Витамин С, как известно, не синтезируется в организме человека, в отличие от многих животных. Предположение генетиков следующее: в процессе эволюции, около 25 милилонов лет назад, человек утратил способность к синтезу витамина С. Этим и объясняется потребность выпуска БАД к пище, в состав которых входит аскорбиновая кислота. Их основное назначение - восполнить запасы витамина С в организме

Аскорбиновая кислота - органическое соединение, являющееся родственным глюкозе. Биологически активным является изомер — L-аскорбиновая кислота, который и принято называть витамином C.

В природе витамин С входит в состав многих лекарственных растений, содержится в овощах и фруктах, хорошо всасывается в желудочно-кишечном тракте и поступает в кровь. В дальнейшем  аскорбиновая кислота и продукт ее окисления – дегидроаскорбиновая кислота – участвуют в биологических окислительно-восстановительных реакциях организма. Аскорбиновая кислота обладает антиоксидантным и антирадикальным свойствами, что обуславливает торможения процесса перекисного окисления белков и липидов и других компонентов клеток и их защиту от повреждения. С этим связаны мембраностабилизирующиие эффекты витамина С, и соответственно его иммуномодулирующее действие.

Витамин С стимулирует рост, участвует в обмене аминокислот, тканевом дыхании, способствует усвоению железа, улучшает функции печени, повышает сопротивляемость организма к инфекциям и интоксикациям, в том числе химическими веществами, обеспечивает устойчивость организма охлаждению, перегреванию и кислородному голоданию. Одна из исключительно важных функций - активирующее действие L-аскорбиновой кислоты на синтез кортикоидных гормонов в коре надпочечников, которые ответственны за адаптационные реакции организма. За счёт стимуляции адаптивных реакции организма витамин С и обладает антистрессовым действием.

Витамин необходим и для функциональной интеграции сульфидгидрильных групп ферментов, служащих для образования и созревания коллагена, а так же и для внутриклеточного структурного вещества, важного для формирования кожи, хрящей, хрусталика глаза, коллагеновых волокон сосудов, костной ткани, зубов и способствует заживлению ран. Поэтому витамин С и обладает капилляроукрепляющим эффектом, а так же стабилизирующим влиянием на соединительную ткань различных структур организма и в том числе стенок сосудов. Укрепляя стенки сосудов, нормализуя их проницаемость, витамин С проявляет антигемморагическое и противовоспалительное действие при капилляропатии (хрупкости, ломкости и истончённости стенок сосудов) различной этиологии.

Оптимальная потребность в аскорбиновой кислоте составляет:

$1· дети первого года жизни - 30-40 мг, 

$1· беременные и кормящие женщины - 70-80 мг,

$1· взрослый человек 55 - 108 мг.

Курящих людей, также как и у людей, проживающих в неблагоприятных экологических условиях (например, вблизи промышленных зон), должны питаться продуктами с высоким содержанием аскорбиновой кислоты, а так же восполнять недостаток с помощью БАД содержащие витамин С и другие антиоксиданты.

L-Аскорбиновая кислота является очень нестойким соединением. Разлагается при воздействии высокой температуры, а так же при соприкосновении с металлами. Длительное вымачивание овощей приводит к потере витамина С. Он переходит в воду и окисляется за короткий промежуток времени. При хранении продуктов растительного происхождения содержание витамин C быстро разрушается. В течение 2 - 3 месяцев хранения, как правило, у большинства ягод, корнеплодов, овощей и фруктов содержание витамин С уменьшается наполовину. В зимний период времени витамин С сохраняется в свежей и квашеной капусте на 35% больше, чем в других фруктах и овощах. Не выдерживает кулинарной обработки, при варке и жарении разрушается до 90% витамина С.

При варке картофеля очищенного, погруженного заранее в холодную воду и дальнейшем нагреве, разрушается от 30% до 50% витамина, а погруженного сразу в горячую воду от 25% до 30%. При варке овощей в супе теряется до 50%. Из проведённых исследований следует, что для сохранения витамина С при кулинарной обработке, овощи для варки не следует нагревать постепенно, а необходимо класть в кипящую воду.

L-Аскорбиновая кислота легко переходит в воду, даже без термического воздействия, поэтому варка овощей в кожуре, что препятствует разрушению и уменьшает потери витамина вдвое. Современная система питания, т.е. постоянная кулинарная обработка  овощей и фруктов, отказ от сыроедения во многом служит необходимостью обязательного применения БАД с высоким содержанием антиоксидантов, в том числе витамина С.

При недостатке витамина С в организме развивается гиповитаминоз, что приводит к достаточно резкому снижению иммунитета, гемморагиям, то есть локальным кровоизлияниям и далее к цинге. Возможно появление и других симптомов: кровоточивость и воспаление десен, выпадение зубов, появление синяков от незначительного физического воздействия, что говорит о хрупкости и ломкости сосудов, длительное заживление ран, выпадение и потеря волос, сухость кожных покровов, раздражительность, общая слабость и болезненность, потеря ощущения комфорта в социальной среде и возникновение депрессии.

Компания «КоролёвФарм» является не только контрактным производителем косметики, но также производит и биологически активные добавки (БАД) к пище в таблетированной и капсулированной форме. В связи с этим кажется необходимым рассказать о некоторых похожих терминах и технологические свойствах этих продуктов.

Технологические свойства порошкообразных (таблетированных и капсулированных) лекарственных веществ и биологически активных добавок к пище зависят от их физико-химических свойств. При производстве биологически активных добавок в форме таблеток и в форме твёрдых желатиновых капсул необходимо учитывать различные технологические характеристики, так как активные компоненты и многие экстракты лекарственных растений поступают в виде порошков или порошковых смесей.

Насыпная плотность

Базовой характеристикой всех сыпучих материалов является плотность. Существуют понятия истинной и насыпной плотности, которые измеряются в г/см3 или кг/м3.

Истинная плотность – это отношение массы тела к объему этого же тела в сжатом состоянии, в котором не учитываются зазоры и поры между частицами. Истинная плотность – постоянная физическая величина, которая не может быть изменена.

В своем естественном состоянии (неуплотненном) сыпучие материалы характеризуются насыпной плотностью. Под насыпной плотностью различных сыпучих материалов понимают количество порошка (сыпучего продукта), которое находится в свободно засыпанном состоянии в определённой единице объема.

Насыпная плотность заданного порошка или любой сыпучей смеси (D нас. пл.) определяется отношением массы свободно засыпанного порошка (Mасса cып.) к объему этого порошка (Vcосуда) по формуле:

D нас.пл.= Mасса cып/Vcосуда

Насыпная плотность учитывает не только объем частиц материала, но и пространство между ними, поэтому насыпная плотность гораздо меньше, чем истинная. Например, истинная плотность каменной соли составляет 2,3 т/м3, а насыпная – 1,02 т/м3.

Зная насыпную плотность применяемых сыпучих материалов можно при проектировании емкостей или дозаторов, а так же капсул и таблеток рассчитать их объем и, соответственно, высоту засыпки. Понятно, что если нам частично известны некоторые параметры, а именно высота засыпки, а так же коэффициент засыпки, то можно рассчитать высоту предполагаемого объема, то есть высоту форматных частей, что очень важно при решении технологических задач. Конечно, если известна насыпная плотность порошка, тогда технологи могут легко рассчитать массу для одной дозы, порции или упаковки и тем самым определить величину дозировки для капсулятора или таблетпресса, а также для любого другого фасовочного оборудования.

Значение насыпной плотности определяется в соответствии со стандартом (ГОСТ 19440-94 «Порошки металлические. Определение насыпной плотности. Часть 1. Метод с использованием воронки. Часть 2. Метод волюмометра Скотта») с помощью прибора волюмометра, принцип действия которого основан на точном определении массы порошка, заполняющего мерную емкость. Волюмометр состоит из воронки с ситом и корпуса с несколькими наклонными стеклами, по которым порошок, пересыпаясь, падает в тигелек с измеренным объемом и весом.

Прибор для определения максимальной насыпной плотности порошков
Рис. 1 Прибор для определения максимальной насыпной плотности порошков
1-измерительный цилиндр; 2-шкала; 3-тумблер; 4-регулировочный винт; 5-контргайка

Объемная или Насыпная плотность зависит от размера, формы, влажности и плотности частиц гранул или порошка. По значению этого показателя можно прогнозировать и рассчитывать объем матричных каналов. Процедуру измерения насыпной плотности порошковой смеси или монопорошка проводят на специальном приборе (рис. 1).

Производят навеску массой 5,0 г порошка. Точность навески до 0,001 г. Далее засыпают навеску в мерный цилиндр. Устанавливают на приборе амплитуду колебаний (35-40 мм) при помощи регулировочного винта. Устанавливают отметку по шкале и фиксируют положение при помощи контргайки. Далее, с помощью трансформатора устанавливают частоту колебаний. Частота устанавливается в интервале от 100 до 120 кол/мин, по счетчику. После включения прибора тумблером оператор следит за отметкой, по которой установлен уровень порошка в цилиндре. Как правило, при работе прибора в течение 10 минут, уровень порошка или смеси становится постоянным, и прибор необходимо отключить.

Насыпную плотность рассчитывают по формуле:

Методики и тесты

где: ρн – насыпная плотность, кг/м3;

m – масса сыпучего материала, кг;

V – объем порошка в цилиндре после уплотнения, м3.

В зависимости от насыпной плотности порошки классифицируют следующим образом:

ρн > 2000 кг/м3 – весьма тяжелые;

2000 > ρн > 1100 кг/м3 – тяжелые;

1100 > ρн > 600 кг/м3 – средние;

ρн < 600 кг/м3 – легкие.

Одним из приборов, на котором проводят измерение насыпной плотности (а также другие характеристики порошковой смеси или монопорошка), является прибор ВТ-1000.

Bettersize BT-1000
Рис.2 Bettersize BT-1000. Прибор для определения насыпной плотности и других характеристик порошков

Анализатор ВТ-1000 (Рис. 2) используется для определения свойств различных сыпучих материалов, связанных с текучестью. Порошок или порошковые смеси, по определению, являются двухфазными системами. Свойства поверхности частиц порошковой смеси или монопорошка, так же как и их плотность, все эти параметры определяет его поведение в потоке и их сыпучесть. Правильное определение параметров сыпучести очень важно для расчетов процессов обработки порошка, его упаковки, транспортировки и хранения.

С помощью ВТ-1000 (Рис.3) возможно определить не только насыпную плотность, но и дисперсность, угол падения, угол естественного откоса, угол на плоской пластине и плотность утряски. Из данных характеристик легко рассчитать угол разности, прессуемость, объем пустого пространства, сжимаемость, униформность. По характеристикам зафиксированным на приборе, можно рассчитать индекс Карра, что позволяет определить значения сыпучести и аэрируемости

Определение насыпной (объемной) плотности
Рис.3 Определение насыпной (объемной) плотности

(поведения порошка в аэродинамической струе).

Порошок засыпается в мерный цилиндр. Отношение занятого им объема к массе порошка является объемной или насыпной плотностью. Рис.3

Антоциан в переводе с греческого означает «синий цветок» и в соответствии с международной цифровой системой кодификации пищевых добавок имеет код Е163. Название частично себя оправдывает, ведь антоцианы – это пигменты растений. Зачастую именно они определяют цвет лепестков цветов, осенних листьев и плодов. Правда, придают они не только синюю окраску, но также пурпурную, фиолетовую, темно-лиловую, и даже розовую, красную и оранжевую.

Метод определения количественного содержания антоциановСама окраска зависит от pH клеточного содержимого: окраска большинства антоцианов ярко-красная, при увеличении рН она постепенно переходит в темно-синюю. Это связано с изменением структуры входящего в состав пигмента агликона. Таким образом объясняется и смена окраски при созревании плодов и отцветании цветков: данные процессы сопровождаются закислением клеточного содержимого, в результате чего и меняется цвет.

Благодаря своему углеродному каркасу С6С3С6 антоцианы относятся к флавоноидам – важной подгруппе фенольных соединений органических веществ. В основе структуры антоцианов лежит 2-фенилбензопириллиевая соль флавилия. Пигмент растений существует в виде гликозидов полигидрокси- и /или полиметоксипроизводных этой соли.

Антоцианты являются антиоксидантами, которые содержатся в ягодах: смородине, винограде, малине, ежевике, вишне. В последнее время по всему миру появилось множество исследований по изучению действия антоциантов. Американские исследователи определили, что употребление в пищу антоциантов сокращает риск поражения раком пищевода и прямой кишки, способствуют снижению воспалительных процессов в организме.

Эти пигменты растений благоприятно воздействуют на сосуды сетчатки и улучшают состояние сосудистой ткани. Эти свойства антоциантов особенно привлекли офтальмологов, тем более что эти вещества в составе ягод предотвращают повреждение тканей глаза. Так, например, употребление антоцианта черники благотворно влияет на капилляры, уменьшает их хрупкость и повышает эластичность. Помимо этого, согласно исследованиям японских ученых, экстракты черники способны снимать раздражение глаз и усталость, и даже улучшать зрение в сумерках.

Американские исследователи установили, что антоцианы, которыми богаты плоды черники, в силу своей уникальной способности подавляют активность свободных радикалов, препятствуют их воздействию на биологические мембраны и таким замедляют процесс старения.

Сегодня антоцианы используются в пищевой промышленности, в частности в производстве кондитерских изделий, напитков, йогуртов: это пищевые красители в виде добавки E163. Экстракты растений с высоким содержанием антоцианов также активно используют в производстве БАД (биологически активных добавок к пище) и СПП (специализированных пищевых продуктов).

Однако необходимо помнить и знать, что только антоцианы черники обладают и оказывают наиболее эффективное воздействие на сетчатку глаз. Поэтому идентификация и контроль антоцианов при производстве БАД под Собственной Торговой Маркой является не прихотью, а обязательной процедурой контрактного производства.

Метод определения количественного содержания антоциановДля определения антоцианов существуют стандартные методики, которые позволяют контролировать подлинность и качество как сырья, так и готовой продукции. Эти методики описаны в Руководстве Р 4.1.1672-03 (Руководстве по методам контроля качества и безопасности биологически активных добавок к пище) и ГФ ХI (Государственная ФАРМАКОПЕЯ, одиннадцатое издание, выпуск 2).

Наиболее современным и эффективным методом для идентификации, очистки и выделения органических соединений является метод высокоэффективной жидкостной хромотографии - ВЭЖХ. Хроматография – наиболее современный метод, который определяет содержание компонентов в смеси. Этот метод заключается в разделении составляющих компонентов на хроматографической колонке (Рис.1) и дальнейшей регистрацией хроматограмм (Рис. 2,3,4) при помощи специального детектора. В соответствии по времени удерживания и спектрам поглощения. производится идентификация исследуемых компонентов

Качественное определение состава антоциановых пигментов проводят с помощью ВЭЖХ (высокоэффективной жидкостной хромотографии) Рис.1 Образцы БАД с антоциан-содержащими компонентами (экстракты черники, красного винограда) экстрагируют дистиллированной водой. Пробы фильтруют через мембранный фильтр с диаметром пор 0,2 мкм. Разделение проводят на хроматографической колонке. Детектирование фотометрическое, l = 520 нм.

 

Рис.1

Метод определения количественного содержания антоцианов

Рис.2 Хроматограмма состава антоцианов черники. Исследования состава антоцианов проведены на свежеотжатом соке

Метод определения количественного содержания антоцианов

Рис.3 Хроматограмма антоцианов аронии. Исследования состава антоцианов проведены на свежеотжатом соке

Метод определения количественного содержания антоцианов

Рис.4 Хроматограмма антоцианов ягод бузины. Исследования состава антоцианов проведены на свежеотжатом соке

Идентификацию пиков проводят путем сравнения с хроматограммами ягод с известным составом антоциановых пигментов и с литературными данными. Относительное содержание индивидуальных пигментов определяют как отношение площади хроматографического пика и суммы площадей пиков всех идентифицированных антоцианов. Как видно на Рис.2 – хроматограмма антоцианов черники, существенно отличается от хроматограммы антоцианов аронии Рис. 3 и хроматограммы антоцианов ягод бузины Рис.4.

Проведение процедуры входного контроля и идентификации антоцианов является гарантией качества БАД выпускаемых под PrivatLabel (Частной или Собственной Маркой) Заказчика.